Helen Vaughan1月29日讀畢需時 5 分鐘非監督式學習的力量:揭示不同領域中的創新應用非監督式學習在供應鏈管理中有著重要的應用價值,可以從歷史銷售數據和供應鏈數據中識別需求模式和趨勢,進行需求預測和庫存優化,這有助於提高供應鏈的效率,減少庫存成本和提供更準確的交貨時間。
Edgar Mueller2023年5月27日讀畢需時 7 分鐘從混沌到洞察:非監督學習引領數據革命非監督式學習在多個領域中具有廣泛的應用,在數據分析和探索方面,聚類方法可以幫助識別數據中的不同類別和群組,進一步揭示數據的結構和特徵,在圖像生成和合成方面,生成對抗網絡被廣泛應用於生成逼真的圖像、視頻和音頻等內容,非監督式學習還可以應用於推薦系統、自然語言處理、遺傳學和醫學影像等
Edgar Mueller2023年4月5日讀畢需時 5 分鐘當機器懂得時間,時序數據分析在人工智慧的重要性 (Time Series Analysis)時序資料分析是指對一系列時間上連續的資料進行分析、建模和預測的過程。在時序資料中,每個數據點都與一個特定的時間點相關聯。這些資料點可能按照一定的時間間隔進行採樣,例如每秒鐘、每小時或每天等等。時序資料通常在自然界和社會科學領域廣泛存在,例如氣象資料、股票價格、心電圖等等。