top of page
搜尋
Helen Vaughan
2024年1月29日讀畢需時 5 分鐘
非監督式學習的力量:揭示不同領域中的創新應用
非監督式學習在供應鏈管理中有著重要的應用價值,可以從歷史銷售數據和供應鏈數據中識別需求模式和趨勢,進行需求預測和庫存優化,這有助於提高供應鏈的效率,減少庫存成本和提供更準確的交貨時間。
Edgar Mueller
2024年1月16日讀畢需時 3 分鐘
什麼是人工智能Artificial Intelligence?
人工智能(Artificial Intelligence,簡稱AI)是指使用計算機技術來模擬、擴展和增強人類智能的一種技術。它通過機器學習、深度學習、自然語言處理、計算機視覺等技術,實現了從數據中學習,自主推理和決策的能力。這使得人工智能可以應用於各個領域,例如語音識別、圖...
Kate Garcia
2023年10月19日讀畢需時 5 分鐘
資料預測:探索機器學習實作與 Kaggle 競賽
Kaggle作為一個知名的機器學習競賽平台,吸引了全球數據科學家和機器學習愛好者的參與。本文將深入探討機器學習實作的關鍵步驟,從資料的準備到預測模型的訓練與優化,並通過Kaggle競賽案例來展示這些步驟的實際應用
Helen Vaughan
2023年10月2日讀畢需時 10 分鐘
探索自主學習在人工智慧領域的趨勢和發展
無監督目標是從數據中發現隱藏的模式和結構,進行數據的分類、聚類、降維等任務。舉例來說,Google News就是一個應用非監督式學習的產品,Google News通過分析大量的新聞文章,自動將相關的新聞分組在一起,形成新聞主題的集合。這是通過對新聞文本進行文本分析和聚類來實現的,
Edgar Mueller
2023年9月30日讀畢需時 8 分鐘
深度學習 vs. 機器學習
隨著人工智慧技術的發展,機器學習和深度學習成為了兩種廣泛使用的技術。雖然它們都是人工智慧的分支,但它們有著不同的特點和應用,關於機器學習和深度學習的基本概念、應用場景、優缺點以及它們之間的區別。 一、機器學習 機器學習是一種人工智慧技術,其基本思想是從資料中提取出規律,並使...
Edgar Mueller
2023年5月27日讀畢需時 7 分鐘
從混沌到洞察:非監督學習引領數據革命
非監督式學習在多個領域中具有廣泛的應用,在數據分析和探索方面,聚類方法可以幫助識別數據中的不同類別和群組,進一步揭示數據的結構和特徵,在圖像生成和合成方面,生成對抗網絡被廣泛應用於生成逼真的圖像、視頻和音頻等內容,非監督式學習還可以應用於推薦系統、自然語言處理、遺傳學和醫學影像等
Lin Chen Xi
2023年5月15日讀畢需時 4 分鐘
深度學習驅動的創新力量:AI的新時代
深度學習的誕生和演進為人工智慧領域帶來了巨大的突破,從最初的感知器到如今的深層神經網絡,它不斷演進和發展,推動了人工智慧的發展和應用,深度學習的應用涵蓋了圖像處理、語音識別、自然語言處理等眾多領域,為我們提供了更智能、更便捷的技術解決方案
Edgar Mueller
2023年4月5日讀畢需時 12 分鐘
從入門到入迷:機器學習的基礎概念
機器學習是一種讓機器學習和做事情的技術,就像你們在學習新東西一樣,如果我們想讓機器學習識別狗和貓,我們可以給它們很多照片,讓它們從中學習區分狗和貓,當機器學習了足夠的數據後,它們就可以開始識別狗和貓了
Henrik Nielsen
2023年3月30日讀畢需時 6 分鐘
如何使用ChatGPT改善客戶支援體驗?
How to Enhance Customer Support Experience with ChatGPT?
In the modern digital era, customer support experience has become a crucial indica
WELCOME
Caterobot AI Magazine
卡特機器人 AI雜誌
bottom of page