Helen Vaughan2023年11月20日讀畢需時 6 分鐘遞歸神經網絡:深度學習中處理時序數據的關鍵工具遞歸神經網絡還廣泛應用於語音識別、股票預測、手寫識別和音樂生成等領域,為這些任務的處理提供了強大的能力,在自然語言處理中,遞歸神經網絡可以捕捉語言序列中的時間相依性,從而實現語言模型、文本生成和語義分析等任務,如遞歸神經網絡可以應用於機器翻譯
Edgar Mueller2023年10月20日讀畢需時 6 分鐘深度學習的激勵函數:從 Sigmoid 到 ReLU 激勵函數是神經網絡中的非線性轉換函數,它將神經元的輸入映射到其輸出,激勵函數的主要作用是引入非線性性質,使神經網絡能夠擬合更複雜的函數和學習非線性關係,激勵函數的選擇對於網絡的性能和學習效果至關重要。激勵函數在神經網絡中扮演著非常重要的角色