Edgar Mueller2023年10月20日讀畢需時 6 分鐘深度學習的激勵函數:從 Sigmoid 到 ReLU 激勵函數是神經網絡中的非線性轉換函數,它將神經元的輸入映射到其輸出,激勵函數的主要作用是引入非線性性質,使神經網絡能夠擬合更複雜的函數和學習非線性關係,激勵函數的選擇對於網絡的性能和學習效果至關重要。激勵函數在神經網絡中扮演著非常重要的角色
Lin Chen Xi2023年10月18日讀畢需時 6 分鐘解決梯度消失和模型收斂問題的革命性模型:ResNetCNNs在圖像識別、物體檢測和語音識別等領域取得了顯著的成果,隨著網路的深度不斷增加,深度CNNs面臨著一些挑戰,如梯度消失和模型收斂問題。
Edgar Mueller2023年9月30日讀畢需時 8 分鐘深度學習 vs. 機器學習隨著人工智慧技術的發展,機器學習和深度學習成為了兩種廣泛使用的技術。雖然它們都是人工智慧的分支,但它們有著不同的特點和應用,關於機器學習和深度學習的基本概念、應用場景、優缺點以及它們之間的區別。 一、機器學習 機器學習是一種人工智慧技術,其基本思想是從資料中提取出規律,並使...
Carl Parrish2023年5月18日讀畢需時 6 分鐘人工智慧深度學習:探索模型能力、應用前景和倫理問題 #ExploringModelCapacity #ApplicationProspects #EthicalIssues #AI深度學習作為人工智慧的重要組成部分,具有強大的模型能力和廣泛的應用前景,我們也需要正視相應的倫理問題,保護用戶的隱私和數據安全性,解決模型的偏見性和黑盒性等問題,僅有在這樣的前提下,深度學習才能真正發揮其潛力,為人類帶來更大的福祉和進步
chun2023年4月14日讀畢需時 5 分鐘遊戲開發中的AI技術:Keras訓練遊戲對手遊戲開發是現今最熱門的行業之一,而人工智慧技術的應用也是不斷發展。使用人工智慧技術,可以實現遊戲中更真實、更智慧的NPC,提高遊戲的娛樂性和挑戰性,由Keras進行遊戲智慧對手的訓練,使深度學習和強化學習演算法提高遊戲NPC的智慧水準。 一、Keras簡介...