top of page

深度學習 vs. 機器學習

已更新:2023年11月22日

隨著人工智慧技術的發展,機器學習和深度學習成為了兩種廣泛使用的技術。雖然它們都是人工智慧的分支,但它們有著不同的特點和應用,關於機器學習和深度學習的基本概念、應用場景、優缺點以及它們之間的區別。

一、機器學習 機器學習是一種人工智慧技術,其基本思想是從資料中提取出規律,並使用這些規律來預測新的資料,機器學習的應用場景非常廣泛,例如自然語言處理、圖像識別、推薦系統等,機器學習可以分為監督學習、無監督學習和強化學習。

監督學習是指從標記的資料中學習規律,訓練資料包括輸入資料和對應的輸出資料,機器學習通過學習輸入資料和輸出資料之間的關係,從而生成一個模型,用於預測新的資料,常見的監督學習演算法包括線性回歸、邏輯回歸、決策樹、隨機森林等。

無監督學習是指從未標記的資料中學習規律,與監督學習不同,無監督學習的訓練資料沒有標籤,機器學習通過學習資料本身的結構和特點,從而找到資料之間的關係,常見的無監督學習演算法包括聚類、主成分分析、異常檢測等。

強化學習是指讓機器學習通過與環境的交互來學習規律,強化學習的訓練資料由環境回饋給機器學習,機器學習通過不斷嘗試與環境交互,從而逐步學習規律並改進策略,強化學習演算法包括Q-learning、SARSA、Deep Q-Network等。



二、深度學習 深度學習是一種機器學習技術,其基本思想是構建多層神經網路來類比人類大腦的工作方式。深度學習的應用場景非常廣泛,例如圖像識別、語音辨識、自然語言處理等,深度學習通常使用反向傳播演算法來訓練神經網路,通過不斷優化網路中的權重和偏置,從而實現對資料的分類或預測。

進一步來說,深度學習模型的架構可以被描述為由多個層組成的神經網絡,每個層都包含許多神經元,並且與前一層和後一層之間的神經元互相連接,這些神經元之間的連接權重和偏差是在訓練期間學習的,這是通過反向傳播演算法來實現的。

深度學習模型可以處理各種不同的數據類型,例如圖像、語音、文本等等,深度學習在圖像識別、語音識別、自然語言處理等領域中得到了廣泛的應用,例如深度學習可以被用於語音助手、自動駕駛汽車、人臉識別等領域。

相對於深度學習,機器學習可以被描述為一個更廣泛的領域,其中包括了許多不同的方法和技術,並且不一定需要使用神經網絡,機器學習的目標是通過分析數據來建立模型,並使用這些模型來進行預測或決策。

機器學習可以分為三種類型:監督學習、非監督學習和強化學習,在監督學習中模型會接收一組已經標記過的數據,並使用這些數據來學習如何對未來的數據進行預測,在非監督學習中,模型會對未標記的數據進行分析,並從中學習如何發現數據之間的關係,在強化學習中,模型會學習如何在與環境互動的過程中進行決策,以實現特定的目標。


深度學習Deep Learning 和 機器學習Machine Learning 的應用場景有何不同?

儘管 Deep Learning 和 Machine Learning 的核心概念非常相似,但它們的應用場景存在巨大的差異,這兩種技術卻在不同領域的應用。


1. 語音和圖像識別

Deep Learning 在語音和圖像識別方面具有獨特的優勢,通過深度學習技術,可以讓電腦系統對語音和圖像進行高級別的理解和分析,例如一些語音辨識系統可以識別多種語言和方言,並能夠辨別講話者的聲音和音調。另外,一些圖像識別系統可以分析照片中的物件,甚至可以對不同角度、光照和尺寸的圖像進行識別。

Machine Learning 演算法在語音和圖像識別方面的表現就要遜色一些, Machine Learning 演算法可以學習識別圖像和語音,但它們的能力相對較弱,通常只能識別一些簡單的模式和特徵。



2. 自然語言處理

Deep Learning 在自然語言處理方面也表現出色,自然語言處理是一種涉及電腦系統處理和理解人類語言的技術,通過使用深度學習技術,可以讓電腦系統理解自然語言中的語義和上下文,並進行自然語言的生成。 Machine Learning 在自然語言處理方面的應用相對有限,雖然 Machine Learning 演算法可以學習識別語言中的詞彙和語法規則,但它們往往不能夠理解語言中的深層含義和上下文資訊。



3. 推薦系統

推薦系統是一種根據使用者的偏好和歷史行為來推薦商品或服務的技術,Deep Learning 在推薦系統方面也有較好的應用表現,通過使用深度學習技術,可以讓推薦系統更好地理解使用者的偏好和行為,並進行更加準確的推薦。 Machine Learning 演算法在推薦系統方面的應用也較為常見,Machine Learning 演算法通常不能夠對使用者行為和偏好進行深入的理解,但它們可以通過學習歷史資料來推斷使用者的可能偏好,並進行相應的推薦。



4. 自動駕駛

對於自動駕駛技術,機器學習可以用於感測器資料的處理和分類,如雷達、雷射雷達、攝像頭和GPS等,例如利用機器學習技術來分析圖像資料,可以識別道路、交通標誌、車輛和行人等物體,從而實現自動駕駛決策。

深度學習則更加適用於對複雜的圖像和聲音資料的處理和分析,例如通過深度學習技術訓練的神經網路,可以自動識別道路上的障礙物和行人,從而實現更準確和安全的自動駕駛。 此外,深度學習還可以用於自動駕駛系統中的目標檢測和跟蹤,例如利用卷積神經網路(CNN)來檢測和跟蹤道路上的車輛和行人,深度學習技術也可以應用於自動駕駛中的語音辨識和自然語言處理等領域,以實現更智慧的交互。



深度學習和機器學習也有其各自的局限性和挑戰,例如深度學習需要大量的資料和計算資源來訓練模型,這對於許多小型企業和研究組可能不可行,深度學習模型的複雜性也導致它們的解釋性較差,很難解釋為什麼會得出某個結果,這對於一些需要透明度和可解釋性的應用場景可能會受到限制,深度學習對於對資料品質的要求也比較高,這意味著如果訓練資料存在偏差或雜訊,模型的準確性可能會受到影響。

相比之下機器學習演算法通常需要較少的資料和計算資源,並且通常具有更好的可解釋性和透明度,機器學習演算法通常可以更好地處理資料的雜訊和缺失值,並且通常比深度學習演算法更容易調整和優化,機器學習演算法在處理大規模資料和高維資料時可能會遇到困難,並且通常需要手動選擇和設計特徵,機器學習演算法可能無法捕捉到資料中的複雜關係和模式,導致準確性較差。


深度學習和機器學習都是非常強大的工具,可以用於各種各樣的應用場景,選擇哪種演算法取決於具體的問題和資料,以及可用的資源和技能水準,隨著技術的進步和發展,我們可以期待這兩種演算法的進一步發展和創新,以滿足不斷增長的資料處理和分析需求。




Deep Learning vs. Machine Learning: Analyzing the Differences


With the advancement of artificial intelligence technology, machine learning and deep learning have become widely used techniques. Although both are branches of artificial intelligence, they have different characteristics, applications, and distinctions. This article discusses the basic concepts, application scenarios, advantages, disadvantages, and differences between machine learning and deep learning.


I. Machine Learning Machine learning is an artificial intelligence technique that involves extracting patterns from data and using those patterns to make predictions on new data. Machine learning has a wide range of applications, such as natural language processing, image recognition, recommendation systems, and more. Machine learning can be categorized into supervised learning, unsupervised learning, and reinforcement learning.


Supervised learning involves learning patterns from labeled data, where the training data consists of input data and corresponding output labels. By learning the relationship between input and output data, machine learning generates a model to predict new data. Common supervised learning algorithms include linear regression, logistic regression, decision trees, random forests, etc.


Unsupervised learning involves learning patterns from unlabeled data, unlike supervised learning, the training data in unsupervised learning does not have labels. Machine learning learns the structure and characteristics of the data itself to discover relationships between the data. Common unsupervised learning algorithms include clustering, principal component analysis, anomaly detection, etc.


Reinforcement learning involves training machine learning models to learn from interaction with an environment. The training data in reinforcement learning is feedback from the environment. Machine learning improves its strategy by continuously interacting with the environment and gradually learning the patterns and improving its decision-making.


Reinforcement learning algorithms include Q-learning, SARSA, Deep Q-Network, etc.

II. Deep Learning Deep learning is a machine learning technique that involves constructing multi-layer neural networks to mimic the workings of the human brain. Deep learning has a wide range of applications, such as image recognition, speech recognition, natural language processing, and more. Deep learning typically uses the backpropagation algorithm to train neural networks by optimizing the weights and biases in the network to achieve data classification or prediction.


In more detail, deep learning models are structured as neural networks composed of multiple layers, each layer containing numerous neurons that are interconnected with neurons in the previous and subsequent layers. The connections between these neurons, represented by weights and biases, are learned during training through the backpropagation algorithm.

Deep learning models can handle various types of data, such as images, speech, text, etc. Deep learning has been widely applied in areas such as image recognition, speech assistants, autonomous driving, facial recognition, and more.


Compared to deep learning, machine learning can be seen as a broader field that encompasses various methods and techniques and does not necessarily require the use of neural networks. The goal of machine learning is to build models by analyzing data and using these models for prediction or decision-making.


Machine learning can be classified into three types: supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, the model learns from labeled data and uses that knowledge to predict future data. In unsupervised learning, the model analyzes unlabeled data to learn patterns and relationships within the data. In reinforcement learning, the model learns how to make decisions through interactions with the environment to achieve specific goals.


Deep learning and machine learning have different limitations and challenges. Deep learning requires a large amount of data and computational resources to train models, which may not be feasible for many small businesses or research groups. The complexity of deep learning models also hinders their interpretability, making it difficult to explain why a particular result is obtained. Deep learning also has higher demands for data quality, meaning that biases or noise in the training data can affect model accuracy.


On the other hand, machine learning algorithms typically require less data and computational resources, and they often offer better interpretability and transparency. Machine learning algorithms are more robust to data noise and missing values and are usually easier to tune and optimize. However, machine learning algorithms may struggle with handling large-scale or high-dimensional data, and they often require manual feature selection and design. They may not capture complex relationships and patterns in the data, resulting in lower accuracy.


Both deep learning and machine learning are powerful tools that can be applied in various scenarios. The choice between the two algorithms depends on the specific problem, data, available resources, and skill level. With the advancement and development of technology, we can expect further innovations and improvements in both algorithms to meet the growing demands of data processing and analysis.




bottom of page