top of page
作家相片Edgar Mueller

半監督學習的關鍵技術:對抗生成網絡(GANs)

已更新:2023年6月10日


對抗生成網絡(Generative Adversarial Networks,GANs)是一種深度學習的架構,可以用於生成新的數據,比如圖像、音頻和自然語言等。GANs 由兩個主要的模型組成,一個是生成器(Generator),負責生成新的數據,另一個是判別器(Discriminator),負責分辨生成器產生的數據是否與真實數據相似。


在 GANs 中,生成器和判別器通過對抗的方式進行訓練。生成器試圖生成真實數據的假冒版本,而判別器試圖分辨真實數據和生成器產生的數據。在訓練過程中,生成器逐漸學習如何生成更逼真的數據,同時判別器也逐漸變得更加精確。當生成器和判別器達到平衡時,生成器可以生成與真實數據相似的新數據。


半監督學習(Semi-Supervised Learning)是指使用標記數據和非標記數據來訓練模型的一種機器學習方法。在現實生活中,標記數據通常比非標記數據更難獲取,因此半監督學習可以通過充分利用非標記數據來提高模型的性能和泛化能力。


GANs 和半監督學習之間存在著密切的關係。實際上,GANs 可以被看作是一種無監督學習方法,因為生成器沒有明確的標記信息。然而,當使用 GANs 進行生成時,我們通常會利用標記數據和非標記數據來訓練判別器,進而影響生成器的訓練過程。因此,GANs 可以被看作是一種半監督學習方法。


在實際應用中,GANs 和半監督學習可以被應用於多個領域,比如圖像生成、圖像修復、圖像分類、自然語言處理等。

半監督學習是一種介於監督學習和無監督學習之間的學習方法。它利用少量已標記的資料和大量未標記的資料來進行模型訓練和預測。與監督學習相比,半監督學習的一個顯著特點是可以使用更少的標記資料獲得更好的學習效果,尤其是在標記資料較難獲取或標記成本較高的情況下,半監督學習可以更好地應對這些問題。


半監督學習的關鍵技術:


1. 標籤傳播演算法:標籤傳播演算法是一種基於圖的演算法,它利用未標記樣本和一小部分已標記樣本的資訊,通過圖模型來對未標記樣本進行標記。標籤傳播演算法被廣泛應用於社交網路分析、圖像分割等領域。

2. 協同訓練:協同訓練是一種半監督學習方法,它通過兩個或多個分類器之間的協作來提高分類的性能。其中一個分類器使用標記資料進行訓練,另一個分類器使用未標記資料進行訓練,它們共同學習並相互協調。

3. 生成式模型:生成式模型是一種可以學習未標記資料分佈的模型,可以生成與訓練資料相似的資料。常見的生成式模型包括自編碼器、變分自編碼器和生成對抗網路等。

4. 多工學習:多工學習是一種半監督學習方法,它通過同時學習多個相關任務來提高分類器的性能。在多工學習中,不同的任務可以共用參數,從而使得每個任務的學習效果更好。

5. 半監督聚類:半監督聚類是一種將無標記資料分為若干類別的方法,它利用已有的一小部分標記資料來輔助聚類過程。半監督聚類通常結合半監督學習和聚類方法,可以應用於圖像分割、文本分類等領域。


這些技術可以説明我們更好地利用未標記資料進行學習,提高機器學習演算法的性能。在實際應用中,選擇合適的半監督學習方法可以顯著提高演算法的性能和準確度。

半監督學習通常包括兩個階段:


第一個階段:使用少量的標記資料和大量的未標記資料來訓練模型


第二個階段:使用訓練好的模型來對未標記資料進行預測,然後根據預測結果來生成新的標記資料,這些標記資料可以用於進一步的模型訓練。這個過程被稱為主動學習(active learning)或半監督學習的反覆運算過程。在半監督學習中,常用的方法包括基於圖的半監督學習方法、半監督聚類、半監督支持向量機(SVM)、半監督深度學習等。這些方法都是為了更好地利用未標記資料,從而提高模型的性能。

半監督學習在實際應用中具有廣泛的應用場景,如文本分類、圖像分類、語音辨識、電腦視覺等。半監督學習涉及到許多方向,其中包括但不限於以下幾個方向:


1. 圖像識別:通過使用少量的標記資料和大量未標記資料進行訓練,半監督學習可以提高圖像分類和識別的準確性。

2. 自然語言處理:在自然語言處理中,半監督學習可以用於詞性標注、命名實體識別和情感分析等任務。

3. 語音辨識:半監督學習可以説明語音辨識系統從大量的未標記資料中學習聲學模型和語言模型。

4. 網路安全:半監督學習可以用於檢測網路入侵和異常行為,通過利用未標記的網路資料進行學習。

5. 推薦系統:半監督學習可以説明推薦系統從大量的未標記資料中學習使用者的偏好和興趣。

6. 資料採擷:在大規模資料集中,半監督學習可以減少標注資料的需求,同時提高分類和聚類的準確性。


半監督學習可以應用於許多領域,有助於解決資料稀缺或標記成本高昂的問題,並提高模型的準確性。

瞭解半監督學習的概念,可以從以下幾個方面入手:


1. 瞭解監督學習和無監督學習的概念,因為半監督學習是這兩者的結合。監督學習是利用已有的帶有標籤的資料進行學習,預測新的資料的標籤;無監督學習是使用沒有標籤的資料進行學習,發現其中的模式或結構。

2. 掌握半監督學習的定義:半監督學習是利用帶有標籤和不帶標籤的資料進行學習,以提高模型的性能。

3. 瞭解半監督學習的應用領域,如圖像分類、文本分類、語音辨識等。

4. 學習半監督學習的演算法,例如基於圖的半監督學習、生成式模型半監督學習、半監督支援向量機等。

5. 學習半監督學習的評估指標,例如標準誤差、準確率、召回率等。

可以通過閱讀相關書籍、論文和網路課程來深入瞭解半監督學習的概念和應用。例如,《統計學習方法》中有關於半監督學習的章節,Coursera、edX和Kaggle等線上教育平臺也提供相關課程。同時,可以參考學術期刊和國際會議上發表的論文,瞭解最新的半監督學習演算法和應用案例。




Key Technique of Semi-Supervised Learning: Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a deep learning framework used for generating new data, such as images, audio, and natural language. GANs consist of two main models: the generator, responsible for generating new data, and the discriminator, responsible for distinguishing whether the generated data is similar to real data.


In GANs, the generator and discriminator are trained in an adversarial manner. The generator attempts to produce counterfeit versions of real data, while the discriminator tries to differentiate between real data and the data generated by the generator. During the training process, the generator gradually learns to generate more realistic data, and the discriminator becomes more accurate. When the generator and discriminator reach a balance, the generator can produce new data that resembles real data.


Semi-supervised learning is a machine learning approach that utilizes both labeled and unlabeled data for training models. In real-life scenarios, labeled data is often harder to obtain than unlabeled data. Therefore, semi-supervised learning can improve model performance and generalization by leveraging unlabeled data.


GANs and semi-supervised learning are closely related. GANs can be considered as unsupervised learning since the generator does not have explicit label information. However, when using GANs for generation, we often utilize labeled and unlabeled data to train the discriminator, which affects the training process of the generator. Thus, GANs can be seen as a form of semi-supervised learning.


In practical applications, GANs and semi-supervised learning can be applied in various domains such as image generation, image restoration, image classification, natural language processing, etc. Semi-supervised learning has the advantage of leveraging unlabeled data to improve the performance and accuracy of machine learning algorithms, especially when labeled data is scarce or labeling costs are high.


Semi-supervised learning involves several key techniques:
  1. Label Propagation Algorithms: Label propagation algorithms utilize information from both labeled and unlabeled samples to assign labels to unlabeled samples based on graph models. These algorithms are widely used in social network analysis, image segmentation, etc.

  2. Co-training: Co-training is a semi-supervised learning method that improves classification performance through the collaboration of two or more classifiers. One classifier is trained with labeled data, while the other is trained with unlabeled data. They learn collaboratively and mutually reinforce each other.

  3. Generative Models: Generative models are capable of learning the distribution of unlabeled data and generating data similar to the training data. Common generative models include autoencoders, variational autoencoders, and generative adversarial networks.

  4. Multi-task Learning: Multi-task learning is a semi-supervised learning approach that improves classifier performance by jointly learning multiple related tasks. In multi-task learning, different tasks can share parameters, leading to improved learning performance for each task.

  5. Semi-Supervised Clustering: Semi-supervised clustering is a method that partitions unlabeled data into several categories by utilizing a small number of labeled samples. Semi-supervised clustering often combines semi-supervised learning with clustering methods and can be applied in image segmentation, text classification, etc.


These techniques explain how to make better use of unlabeled data for learning and improve the performance of machine learning algorithms. In practical applications, selecting suitable semi-supervised learning methods can significantly enhance the performance and accuracy of algorithms.



Semi-supervised learning typically involves two stages:

First stage: Training the model using a small amount of labeled data and a large amount of unlabeled data.


Second stage: Using the trained model to make predictions on unlabeled data and generating new labeled data based on the predictions. This newly labeled data can be used for further model training. This process is often referred to as active learning or the iterative process of semi-supervised learning. Common methods in semi-supervised learning include graph-based semi-supervised learning, generative model-based semi-supervised learning, semi-supervised support vector machines (SVM), semi-supervised deep learning, etc. These methods aim to better utilize unlabeled data to improve model performance.


Semi-supervised learning has a wide range of applications in various fields, such as text classification, image classification, speech recognition, computer vision, etc. It helps to address the challenges of data scarcity or high labeling costs, leading to improved model accuracy.


To understand the concept of semi-supervised learning, you can start with the following aspects:
  1. Understand the concepts of supervised learning and unsupervised learning since semi-supervised learning combines these two. Supervised learning utilizes labeled data for learning and predicts labels for new data, while unsupervised learning discovers patterns or structures from unlabeled data.

  2. Grasp the definition of semi-supervised learning, which involves learning from both labeled and unlabeled data to improve model performance.

  3. Familiarize yourself with the application areas of semi-supervised learning, such as image classification, text classification, speech recognition, etc.

  4. Learn about the algorithms in semi-supervised learning, such as graph-based semi-supervised learning, generative models in semi-supervised learning, semi-supervised support vector machines (SVM), etc.

  5. Understand the evaluation metrics in semi-supervised learning, such as standard error, accuracy, recall, etc.

You can deepen your understanding of semi-supervised learning by reading relevant books, papers, and online courses. For example, the book "Pattern Recognition and Machine Learning" includes chapters on semi-supervised learning. Online education platforms like Coursera, edX, and Kaggle offer related courses. Additionally, referring to papers published in academic journals and international conferences can provide insights into the latest semi-supervised learning algorithms and application cases.




bottom of page